
Polyurethane Materials for Vibration Isolation

Getzner Werkstoffe specialises in foamed polyurethane elastomers, which are used in the rail, construction and industry sectors for isolating vibrations. The company, which has developed materials such as Sylomer® and Sylodyn®, has almost 50 years of experience.

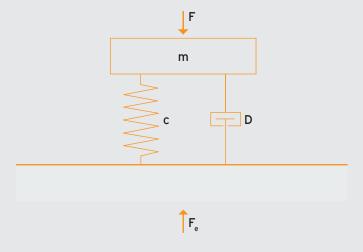
What can Getzner materials do?

Peace and guiet is essential for a high quality of life, whether within one's own four walls or at work in the office. But there are countless sources of noise, especially in cities. For example, footfall noise and the noise generated by rail and road traffic, which all have a huge detrimental effect on the quality of life and can even reduce the value of whole properties. Getzner materials ensure a high quality of life by decoupling entire buildings, parts of buildings or even the service facilities (lifts, air-conditioning equipment, bath tubs, pumps, etc.) from vibrations.

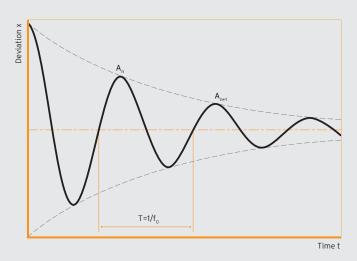
They prevent vibrations from propagating into sensitive parts of the building and generating disruptive vibrations or noise.

The polyurethane-based materials, Sylomer® and Sylodyn®, are ideal for industry, as many industrial products require load-resilient elastic components: the materials are available in any number of forms and combine properties such as high spring and/or dampening properties, outstanding elastic recovery and a long service life.

Getzner materials can also be used for not only the bedding or damping of components but also for entire machines. Depending on the application, they provide a longer service life (less downtime/maintenance), greater machine precision, less machine noise, more comfortable operation, etc.


2 Mass-Spring Systems Calculation Model

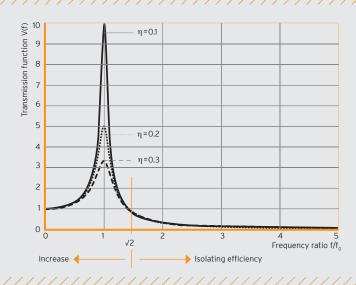
One-dimensional mass-spring system


Most vibration problems can be physically represented as one-dimensional mass-spring systems (MFS). This approach allows the best possible resilient bedding to be calculated.

Should a brief external force (F) disrupt the balance of a mass (m), the mass will produce a vibration with the natural frequency f₀. The amplitude of the vibration reduces over time. How quickly this happens depends on the damping (D) of the spring (c). The extent of the damping by Sylomer® or Sylodyn® gives the mechanical loss factor.

Physical principle of the mass-spring system

How a mass-spring system works


Vibration protection for air-conditioning system.

The isolating efficiency or insulation provided by a resilient bearing is represented by the transmission function V(t).

he transmission function describes the mathematical relationship between an effect (excitation amplitudes) on a system and its response (vibration amplitudes). It is the ratio between the natural frequency and the excitation frequency (f/f₀). The isolating efficiency is in the frequency range f/f₀ > √2 (1.41). If the excitation frequency is known and the natural frequency of the system has been calculated, conclusions can then be

drawn regarding the possible isolating efficiency of the elastic bearing. Generally speaking, the higher the frequency ratio f/f of the higher the isolating efficiency, The natural frequency of the elastic system can be significantly influenced by two factors: the mass of the system and the spring constant or stiffness of the elastic bearing. How the spring constant C required to compute the frequency is calculated is illustrated below. The modulus of elasticity describes the correlation between stress and strain in the deformation of a solid body. This value can be found in the data sheets for the various

types of Sylomer, and Sylodyn, prøduct, A further factor affecting the spring constant is the ratio between the bearing surface and the thickness of the material: the thicker the selected elastic bearings, the smaller (softer) the spring constant. The deflection and the form factor - the ratio between bearing surface and lateral surface - also have to be taken into account. Getzner Werkstoffe engineers are available to assist in the calculation and selection of the elastic bearing with a view to achieving the optimum vibration damping and insulation.

Isolating efficiency of an elastic bearing

$$f_0 = \frac{1}{2\pi} \cdot \sqrt{\frac{c}{m}} = \frac{1}{T}$$

T = period length in s

 f_0 = natural frequency in Hz

c = spring constant in N/m

m = vibrating mass in kg

$$C = \frac{E \cdot A}{d}$$

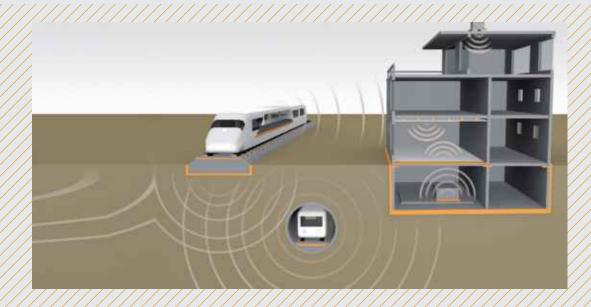
E = dynamic modulus of elasticity in N/mm²

A = bearing surface in mm²

d = material thickness in mm

3 | Source or Recipient Isolation

The effects of vibrations or shocks can be experienced in practically all aspects of everyday life: the dashboard in your car rattles, window panes vibrate when a train goes by, machine tools no longer machine workpieces accurately, the rumble of the metro can be heard in a 10th floor apartment.


All these phenomena are derived from the so-called structure-borne noise. When fixed bodies start to vibrate, noise propagates through them, which then emerges as secondary airborne noise (rumbling of the metro). Structure-borne noise can be suppressed in two ways.

1.) Source isolation

Providing an elastic bearing for the initiator - in other words the source (motor, air-conditioning equipment, train, etc.) - to a large extent prevents the propagation of structure-borne noise.

2.) Recipient isolation

Elastic decoupling of the recipient (buildings, space, devices, etc.) prevents structure-borne noise from entering and disturbing the occupiers of the property.

Recipient and source isolation

4 | Standard Materials Overview

Professional advice is

Sylomers-High elasticity, łong setvice life

Material characteristic:

- Mixed cellular
- Static application area from 0.011 N/mm² to 1.2 N/mm²
- Load peaks up to 6.0 N/mm²
- Very low amplitude dependence
- Proven long-time behaviour
- High fatigue strength
- Finely graded range (10 standard types) for optimum system design
- Ability to provide customer-specific modifications

Universally applicable elastic PU material, spring-damper combination, proven for more than 45 years

Application examples:

- As pressurised spring for vibration isolation in construction/rail sectors and for machinery
- Mass-spring systems, under ballast mats, sleeper pads, rail pads and baseplate pads
- Full-surface, strip and point bearings for buildings
- Impact noise insulation
- Bearings for stairs and landings
- Machinery and foundation bearings
- Elastic components for transport rollers and belts
- Flexible elastic press mats
- Highly flexible seals moulded parts, semi-finished articles

Sylodyn_e-High dynamic Durability

Material characteristic:

- Closed cell
- Static constant load of standard types
 from 0.075 N/mm² to 6.0 N/mm²
- Load peaks up to 18 N/mm²
- Very low amplitude dependence
- Low creep tendency
- Stiffening factor (Cdyn/Cstat) from 1.15
 to 1.40
- Proven løng-time behaviour
- Fatigue strength
- Finely graded range (7 standard types) for optimum system design
- Ability to provide customerspecific modifications

Technical spring with pronounced dynamic and highly elastic properties, proven in the field for more than 20 years

Application examples:

- As pressurised spring for vibration isolation in construction/rail sectors and for machinery
- Mass-spring systems, under ballast mats, sleeper pads, rail pads and baseplate pads
- Full-surface, strip and point bearings for buildings
- Bearings for stairs and landings
- Machinery and foundation bearings
- Elastic components for transport rollers and belts
- Flexible elastic press mats
- Highly flexible seals
- Moulded parts, semi-finished articles

Special materials

Sylodamp - high damping (mechanical loss factor 0.46 - 0.61)

Sylomer FR - fire resistant (S4/SR2/ST2 according to DIN 5510-2)

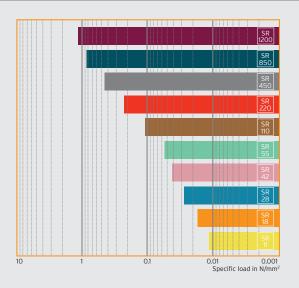
Highly resilient bearing HRB-HS -Load peaks up to 9.0 N/mm²

Products

- Acoustic Floor Mat
- Acoustic Floor Blocks
- Bearings for stairs and landings
- Foundation bearings
- Elastic ceiling hangers
- Elastic bearings in timber construction
- Bearing of machine foundations
- etc

5 Overview Sylomer®

Material


Mixed cellular PU elastomer (Polyurethane) with combined spring and dampening properties.

Standard delivery specifications

Thickness: 12.5 mm / 25 mm Rolls: 1.5 m wide, 5.0 m long

up to 1.5 m wide, up to 5.0 m long Strips:

Other dimensions, punched and moulded parts on request.

Sylomer_® Material type

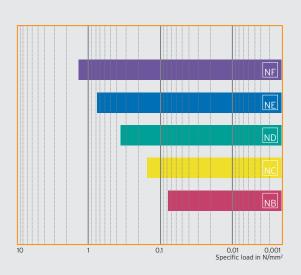
Properties	Test procedures										
Color		yellow	orange	blue	pink	green	brown	red	grey	turquoise	violet
Static range of use¹ in N/mm²		0.011	0.018	0.028	0.042	0.055	0.110	0.220	0.450	0.850	1.200
Load peaks ¹ in N/mm ²		0.50	0.75	1.00	2.00	2.00	3.00	4.00	5.00	6.00	6.00
Mechanical loss factor	DIN 53513 ²	0.25	0.23	0.21	0.18	0.17	0.14	0.13	0.12	0.11	0.11
Rebound elasticity in %	EN ISO 8307	45	45	50	50	55	55	55	60	60	60
Compression ³ set in %	EN ISO 1856	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Static modulus of elasticity ¹ in N/mm ²		0.06	0.10	0.17	0.28	0.37	0.87	1.44	3.30	7.20	10.40
Dynamic modulus of elasticity¹ in N/mm²	DIN 53513 ²	0.17	0.28	0.44	0.61	0.75	1.36	2.54	5.04	11.10	16.40
Static shear modulus¹ in N/mm²	DIN ISO 1827 ²	0.04	0.05	0.07	0.11	0.13	0.23	0.35	0.58	0.80	0.90
Dynamic shear modulus ¹ in N/mm ²	DIN ISO 1827 ²	0.10	0.12	0.15	0.21	0.26	0.42	0.64	1.00	1.40	1.60
Min. tensile stress at rupture in N/mm²	DIN EN ISO 527-3/5/100°	0.30	0.35	0.40	0.50	0.60	0.80	1.20	1.80	2.50	2.70
Min. tensile elongation at rupture in %	DIN EN ISO 527-3/5/100 ²	300	300	250	250	250	220	200	170	170	160
Abrasion ³ in mm ³	DIN EN ISO 4649	1,400	700	1,300	1,200	1,100	1,100	1,000	400	300	350
Coefficient of friction (steel)	Getzner Werkstoffe	≥0.5	≥0.5	≥0.5	≥0.5	≥0.5	≥ 0.5	≥0.5	≥0.5	≥0.5	≥0.5
Coefficient of friction (concrete)	Getzner Werkstoffe	≥0.7	≥0.7	≥0.7	≥ 0.7	≥0.7	≥ 0.7	≥0.7	≥ 0.7	≥0.7	≥0.7
Specific volume resistance in Ω·cm	DIN IEC 60093	>1012	>1011	>1011	>1011	>1011	>1011	>1011	>1011	>1010	>1010
Thermal conductivity in W/mK	DIN EN 12667	0.045	0.050	0.050	0.055	0.060	0.075	0.090	0.11	0.13	0.14
Operating temperature in °C		-30 to 70									
Temperature peak in °C	short term ⁴	120									
Flammability	EN ISO 11925-2	class E/EN 13501-1									

All information and data is based on our current knowledge. The data can be applied for calculations and as guidelines, are subject to typical manufacturing tolerances, and are not guaranteed. We reserve the right to amend the data.

Data valid for a form factor of q=3
 Tests according to respective standards
 Testing parameters vary depending on density
 Application-specific

6 | Overview | Sylodyn®

Material


Closed cellular polyurethane (PUR) with highly elastic properties.

Standard delivery specifications

Thickness: 12.5 mm / 25 mm Rolls: 1.5 m wide, 5.0 m long

up to 1.5 m wide, up to 5.0 m long Strips:

Other dimensions, punched and moulded parts on request.

HRB HS

HRB HS

Sylodyn® Material type		NB	NC	ND	NE	NF	3000	6000		
Properties	Test procedures									
Color		red	yellow	green	blue	violet	dark green	dark blue		
Static range of use ¹ in N/mm ²		0.075	0.150	0.350	0.750	1.500	3.000	6.000		
Load peaks ¹ in N/mm ²		2.00	3.00	4.00	6.00	8.00	12.00	18.00		
Mechanical loss factor	DIN 535132	0.07	0.07	0.08	0.09	0.10	0.07	0.07		
Rebound elasticity in %	EN ISO 8307	70	70	70	70	70	70	70		
Compression set ³ in %	EN ISO 1856	<5	<5	<5	<5	<5	<5	<5		
Static modulus of elasticity ¹ in N/mm ²		0.75	1.10	2.55	6.55	11.80	33.20	74.00		
Dynamic modulus of elasticity ¹ in N/mm ²	DIN 53513 ²	0.90	1.45	3.35	7.70	15.20	49.10	113.80		
Static shear modulus¹ in N/mm²	DIN ISO 1827 ²	0.13	0.21	0.35	0.61	0.80	2.40	3.50		
Dynamic shear modulus ¹ in N/mm ²	DIN ISO 1827 ²	0.18	0.29	0.53	0.86	1.18	2.80	4.20		
Min. tensile stress at rupture in N/mm²	DIN EN ISO 527-3/5/100°	0.75	1.50	2.50	4.00	7.00	12.00	15.00		
Min. tensile elongation at rupture in %	DIN EN ISO 527-3/5/100 ²	450	500	500	500	500	400	400		
Abrasion ³ in mm ³	DIN EN ISO 4649	1,400	550	100	80	90	100	80		
Coefficient of friction (steel)	Getzner Werkstoffe	≥0.7	≥ 0.7	≥ 0.7	≥0.7	≥0.7	≥ 0.7	≥ 0.7		
Coefficient of friction (concrete)	Getzner Werkstoffe	≥0.7	≥ 0.7	≥ 0.7	≥0.7	≥0.7	≥ 0.7	≥ 0.7		
Specific volume resistance in Ω cm	DIN IEC 60093	>1011	>1011	>1011	>1011	>1011	>1010	>1010		
Thermal conductivity in W/mK	DIN EN 12667	0.070	0.085	0.110	0.135	0.150	0.155	0.160		
Operating temperature in °C		-30 to 70								
Temperature peak in °C	short term ⁴	120								
Flammability	EN ISO 11925-2	class E/EN 13501-1								

All information and data is based on our current knowledge. The data can be applied for calculations and as guidelines, are subject to typical manufacturing tolerances, and are not guaranteed. We reserve the right to amend the data.

Data valid for a form factor of q=3
 Tests according to respective standards
 Testing parameters vary depending on density
 Application-specific

7 | Application Examples | Construction

Bedding of buildings

Screed floating floors

 $Sylodyn_{\ensuremath{\circledast}}$ strips for decoupling of the flanking transmission

Building foundation bearings

Bearing systems for stairs

8 Application Examples Industry

Decoupling of metal parts using spring damper elements

Polishing pads

Pump bearing

Floating floors for rolling stock

Sealing element for vacuum lifting device

Decoupling of yacht flooring

Machine foundation bearings

Getzner Werkstoffe GmbH

Herrenau 5 6706 Bürs Austria T +43-5552-201-0 F +43-5552-201-1899 info.buers@getzner.com

Getzner Werkstoffe GmbH

Am Borsigturm 11 13507 Berlin Germany T +49-30-405034-00 F +49-30-405034-35 info.berlin@getzner.com

Getzner Werkstoffe GmbH

Nördliche Münchner Str. 27a 82031 Grünwald Germany T +49-89-693500-0 F +49-89-693500-11

info.munich@getzner.com

Getzner Spring Solutions GmbH

Gottlob-Grotz-Str. 1 74321 Bietigheim-Bissingen Germany T +49-7142-91753-0

F +49-7142-91753-50

info.stuttgart@getzner.com

Getzner France S.A.S.

Bâtiment Quadrille 19 Rue Jacqueline Auriol 69008 Lyon France T +33-4 72 62 00 16 info.lyon@getzner.com

Getzner Werkstoffe GmbH

Middle East Regional Office Abdul - Hameed Sharaf Str. 114 Rimawi Center - Shmeisani P. O. Box 961 303 Amman 11196, Jordan T +9626-560-7341 F +9626-569-7352 info.amman@getzner.com

Getzner India Pvt. Ltd.

1st Floor, Kaivalva 24 Tejas Society, Kothrud Pune 411038, India T +91-20-25385195 F +91-20-25385199 info.pune@getzner.com

Nihon Getzner K.K.

6-8 Nihonbashi Odenma-cho Chuo-ku, Tokyo 103-0011, Japan T +81-3-6842-7072 F +81-3-6842-7062 info.tokyo@getzner.com

Getzner Materials (Beijing) Co., Ltd.

No. 905, Tower D, the Vantone Center No. Jia 6, Chaowai Street, Chaoyang District 10020, Beijing, the P.R.C. T +86-10-5907-1618

F +86-10-5907-1628

info.beijing@getzner.com

Getzner USA, Inc.

8720 Red Oak Boulevard, Suite 528 Charlotte, NC 28217, USA T +1-704-966-2132 info.charlotte@getzner.com

www.getzner.com

